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Abstract. Previous works for multi-target tracking employ two strate-
gies: global optimization and online state estimation. In time-critical
applications, the former methods have long temporal latency, and the
latter can’t recover from erroneous association or drifting. In this pa-
per, we combine these two strategies, and propose a new low-latency on-
line tracking approach. Unlike previous multi-hypotheses methods, which
are always suffered from combinational explosion, our approach keeps
the candidate associations using multiple alignments only in ambiguous
cases. The novel features based on previous multi-frame associations are
designed for re-ranking of the multiple linkages. The experimental re-
sults illustrate the advantage and robustness of these features based on
prediction of previously generated tracks, and their discrimination to
find optimal ones. Comparison with five state-of-the-art methods proves
that our proposed method is competitive to global optimal ones and is
superior to other online tracking algorithms.

1 Introduction

Visual multi-target tracking is a very important topic in computer vision. Appli-
cations based on visual multi-target tracking can be roughly classified into two
categories. One is related with offline analysis after events take place. Mining
similar actions and searching specific activities are examples of this category.
The other aims to react to the online time-critical scenarios, such as finding
abnormal events immediately or predicting dangerous accidents, and so on. Our
work aims to promote the performance of multi-target tracking for the second
category applications.

Various tracking approaches [1-8] are proposed to handle the tracking prob-
lems based on associations of detection responses. Considering the relationships
between neighbor detection responses as being linked or not, the detection associ-
ation can be modeled as network flow problems [1], k-shortest paths optimization
[2], or conditional random fields (CRFs) with different constrains [3, 4]. There
are large feasible solution spaces for these models, and global optimizations are
employed to achieve promising performance. In order to employ these global
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optimization algorithms for online time-critical applications, the temporal slid-
ing windows mechanism is utilized to extend these methods. However, they are
suffered from the cost of long latency by the straightforward extension.

In order to implement online multi-target tracking for quick reaction in in-
stantaneous tasks, the frame-by-frame associations using greedy or bipartite
matching approaches are employed with well-designed affinity metrics [5, 6].
By comparison with global optimization, these approaches are more likely to
produce some ambiguous associations at current instants. Because it is more
distinguishable considering the linkages of future frames, one possible solution
is using the information of next few frames to decide the better association at
the present moment. Thus, the current tracking results will be deferred for some
frames. If this latency is small enough, for example less than 0.5 seconds, such as
the latency has nearly no effect for online applications, we still can deem the algo-
rithm as online ones. Differing from frame-by-frame online tracking, we call these
online methods with small-deferring as low-latency online tracking algorithms.
The classic low-latency online tracking algorithms are multi-hypothesis tracking
method (MHT) [7] and joint probabilistic data association filter (JPDAF) [8].
However, these two methods are suffered from two problems. The first is com-
binational explosion when the space of observation increases. The second is the
final determination of association is coupled tightly with the local features which
cause the ambiguities, thus the erroneous linkages can seldom be corrected. We
need global features beyond the local affinities to find a better choice. In our
work, we propose a new multi-association based online multi-tracking method.
Instead of only using Gaussian kernel similarity of position in MHT, we combine
different appearance and motional features in structured output Ranking-SVM
framework, and generate multiple hypotheses considering different alignments
between tracks and detections. The final association is determined by the multi-
frames features considering the previous long temporal multi-frame assignments
as illustrated in Figure 1.

The insight of our approach tries to hybridize the frame-to-frame local affinity
and multi-frame associations into one low-latency online tracking framework. We
utilize weighted multiple features for frame-to-frame matching as in [6]. Through
using multiple alignments, we can explore wider association space, and have
more probability to cover correct linkages. We select the best solution using
high-order multiple frame features which are more informative and discrimina-
tive than frame-to-frame affinity. Those long-term association features are widely
used in the CRF model [3, 4]. However, it is time-consuming and even intractable
to train and to infer the best association status using arbitrarily complex fea-
tures in CRFs. By comparison, re-ranking the possible associations using these
multi-frame association features is more efficient and concise. Thus, the low-
latency online solution can be designed using the strategy of local multi-frame
associations and global re-ranking. In our method, the weights for combing the
multi-frame association features are learned offline, and our approach is based
on a hybrid strategy of the online tracking and offline learning.
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Fig. 1. The framework of our proposed approach. We construct the association pairs
from ground truth as training samples to learn RankingSVM model, and use the model
to re-rank the current candidate associations when they can’t be decided definitely. The
3 frame associations are composed by 3 step linkages as linked number list (such as
linkage 1 → 2 → 4) in the figure. The selected association is considered as the best
association, and the its first linkage is the t-frame tracking result.

The main contributions of this paper lie in three points. (I) We develop a
novel low-latency online multi-target tracking framework using re-ranking strat-
egy. Compared with global optimization, which directly infer the most proba-
ble posterior within the CRF or MRF framework, we can use more complex
high-order features. (II) We propose a new method to generate online multiple-
hypotheses without bringing in the problem of combinational explosion. These
multiple hypotheses consider the multiple alignments between tracks and detec-
tions, and are only necessary in the case of ambiguous linkage. (III) The discrim-
inative features are proposed for multi-frame association re-ranking. Experimen-
tal results prove they are effective for re-ranking of the candidate associations
based on previous tracking results.

2 Related Works

The core motivation of our paper is how to integrate the global association into
the online tracking framework. Our strategy lies from the spirit of deferring
the decision when the online matching is not easy to obtain. We instantiate
this strategy in the online multi-target tracking with structured learning and
re-ranking algorithm. The related works are outlined in following aspects.

Generating a small set of feasible solutions, and finding the best one after
accumulation of evidences is a common strategy in the field of visual computing.
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It is multi-stage cascading procedure in essence. The face detection algorithm
[9] illustrates its advantages in performance and speed. This strategy is applied
for measurement appraisal in the MHT [7] and JPDAF [8]. These approaches
depend on the two stages of finding the candidate K-best solutions and choosing
the optimal one with largest sum of log-probabilities of leaf-branches after a
temporal delay. The cascading algorithms have also been utilized within particle
filter framework [10, 11]. Different from these algorithms, we combine the re-
ranking algorithm to promote the association results of the online structured
learning.

Combination of offline global optimization and online updating is utilized in
some previous works [12, 13]. It has been proved to be effective to improve the
tracking performance using the selected features which are trained with large
scale dataset. In [12], a most discriminative feature pool is learned beforehand,
and they serve as the candidate features for each gallery track segment. In [13],
a deep stacked denoising auto-encoder is employed to learn the robust features
from an image dataset, and these features are updated in online tracking using
additive sigmoid classifiers. By contrast, our proposed approach can be consid-
ered as a tradeoff between the global optimization and online multi-target state
updating.

There have been some works related with getting M best solutions in prob-
abilistic model [14, 15], and deterministic graphic optimization problems [16,
17]. In our work, we use different alignments to get at most M best solutions
within the framework of structured output learning. Among the candidate M
best solutions, we utilize the re-ranking algorithm to score and select the po-
tential best one. Re-ranking algorithms are transferred from natural language
processing [18] and information retrieval [19] to the problems of visual tracking
[20, 21]. In [20], a CRF model is constructed to represent the possible connec-
tions between detection responses. RankBoost algorithm is employed to train the
model with sampling association pairs. In [21], the weakly supervised ranking
algorithm is proposed to learn the weights of appearance features. The graph
Laplacian is used to regularize the smoothness of similarities between samples.
Different from above methods, we employ the high-order and complex features
from multi-frames associations to preferably assess the correctness of the candi-
date solutions, and appraisal the best one.

3 Online Multi-target Tracking with Multiple Alignments
between Tracks and Detections

Learning multiple features and combining them is an important topic to enhance
the robustness of online multi-target tracking. Here, we employ the structured
output SVM learning as in [6] to learn the weights for combining multiple fea-
tures.

Denoting the j-th detection response in frame t as stj = (btj , o
t
j,1, o

t
j,2, . . . , o

t
j,K),

where btj is the bounding box and otj,k is its k-th feature, the set of detection

responses in frame t is St = {stj}nj=1. Further, we can define the i-th candidate
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Fig. 2. (a)(b) Detection responses are imprecise using two type detectors [23, 24].
(c)(d)(e) Object 15 has occluded template features. In order to decide the association
of object 15 to the detections in (d), the association of next frame in (e) has more
distinguishable features.

track till frame t−1 as the detection response list rt−1
i = {st−l

i , st−l+1
i , . . . , st−1

i }
from the start frame t − l to frame t − 1. Thus, the set of candidate tracks for
frame t is Rt−1 = {rt−1

i }mi=1. Based on the K dimension features defined for each
detection response, we can calculate theK-dimensional affinity between rt−1

i and
stj denoted as ati,j = Á(rt−1

i , stj), and combine the K-dimensional affinity vector
using weight w into one affinity scalar.

In the problem of online multi-target tracking using detection response asso-
ciation, we need to link the candidate tracks Rt−1 and detection responses St for
each frame t. Let a binary vector set Yt =

{
yt∣yt = [yt1,1, . . . , y

t
m,1, y

t
1,2, . . . , y

t
m,n]

T
}

represent the linking result candidates, there should be the constraints
∑

i yi,j ≤ 1
and

∑
j yi,j ≤ 1 because one candidate track is matched with one detection

response at most. To solve the problem of how to obtain the online associa-
tion yt. The optimal bipartite matching method can be employed to obtain
yt by yt = argmaxy∈Yt

⟨w, yT©(Rt−1, St)⟩, where the feature matching matrix

©(Rt−1, St) = [at1,1, . . . , a
t
m,1, a

t
1,2, . . . , a

t
m,n]

T . To obtain the optimized weight
vector w̃, we utilize the structured output SVM algorithm as in [6]:

w̃ = argmin
w

1

2
∥w∥2 + C1

N

∑
»t (1)

s.t. max
y∈Yt

¢(y, yt)− ⟨w, yTt ©(Rt−1, St)− yT©(Rt−1, St)⟩ ≤ »t

∀»t ≥ 0, t = 1...N

This problem has efficient cutting-plane solution [27] using N collected sam-
ples: {yt, ©(Rt−1, St)}Nt=1.

The above formulations present an efficient solution for multi-target tracking
by offline learning. Same as in [6], we define the loss function¢(y, yt) ≡ yT (1−yt)
and 42-dimensional features for each detection response. However, there are still
some problems needed to be discussed in detail. One of the most important issues
is how to define theK-dimensional affinity ati,j = Á(rt−1

i , stj) so that the matching
between stj and rti is aligned. In order to design meaningful and effective affinity
vector, we should keep the features in tracks and in detections consistent as
far as possible. Normally, it is difficult for detectors to obtain complete aligned
results. It is also hard to design consistent tracking features using detection
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pools along tracks, which acts as the templates to match with detections. For
example, in Figure 2, the detectors [23, 24] obtain some imprecise results as
illustrated in (a) (b). To match with detection results in the next frame as in (c)
(d), the tracks may utilize their last detected features as their templates because
these detections are mostly close to their next matched detections. However, this
strategy is not suitable for the case of partial occlusion, in which the features of
the last detections may be generated from the occluders rather than from targets
themselves as in (d). These misaligned features between tracks and detections
make the affinity unreliable for online tracking.

From above discussion, the problems of inconsistent features between tracks
and detections can be considered as different cases of misalignments. From the
view of tracking, the features of tracks may suffer from unreliability due to pose
changing and occlusions, which will cause the feature templates to be ambiguous.
These ambiguities can be considered as progressive misalignment. From the view
of detections, the bounding boxes of detection response may be skew to one
side because of irregular shapes or non-max suppression operations. These skew
bounding boxes can be considered as detection misalignment. These two kinds
of misalignments are the main problems of how to design the appropriate affinity
functions between tracks and detections. Our paper mainly discuss how to obtain
the better online association using re-ranking considering these misalignments.

4 Re-ranking of Multi-online Associations with SSVM
Learning

4.1 Re-ranking of Multiple Online Associations using
Multi-alignments

To handle the feature misalignment between tracks and detections, a straightfor-
ward approach is to infer the best one among the candidate alignments. However,
it is nearly intractable to find the optimal alignment because it is hard to pre-
dict which trajectories are occluded and whether the detections are irregular.
Therefore, we keep the different alignments to cover the optimal one as possible
as we could. In our approach, the kept alignments of tracks have two types: the
average features and the latest features of their most recent detections. The kept
alignments of detections are based on four corners of the bounding box. There-
fore, there are at most eight cases for the association in one frame, although in
the most frames only one or two of them are different and kept.

To find the best one of the multiple alignments at the frame t, we foresee
associations in next ¢t frames based on previous ¢T tracking results, and we
denote the temporal range from t−¢T to t+¢t as [t−¢T : t+¢t]. Because
the accumulative features are more discriminative than those from single one
frame, we accumulate evidences of multiple frame association in these ¢T +
¢t frames. Then, we employ the re-ranking algorithm with the accumulative
features to select the best candidate multi-frame associations. To simplify the
detailed explanation of our re-ranking algorithm. We extend the notations in
section 3 and list their descriptions in Table 1.
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Table 1. Notations for Re-Ranking of Multi-Frame Associations

Symbols Description

[ta : tb] The discrete set from ta to tb. If ta and tb is frame number, then the
discrete set represent one frame range from ta to tb.

R[t−¢T :t+¢t] The trajectory set which are overlapped with the frame range from
frame t−¢T to frame t+¢t.

S[t−¢T :t+¢t] The detection set which are detected within the frame range from frame
t−¢T to frame t+¢t.

y[t:t+¢t] The association between trajectory set R[t−¢T :t+¢t] and detection set
S[t:t+¢t] within the frame range from t to t+¢t.

r
[t−¢T :t+¢t]
k

The k-th trajectory in the trajectory set R[t−¢T :t+¢t] which has detec-
tion set within the frame range from t−¢T to t+¢t.

tks , t
k
e The first frame number and the last frame number of the trajectory

r
[t−¢T :t+¢t]
k within the frame range from t−¢T to t+¢t.

s
tp
k

The detection response at the frame tp for the trajectory r
[t−¢T :t+¢t]
k .

B(r
[t−¢T :t]
k ) One B-spline curve fitting for the k-trajectory r

[t−¢T :t]
k .

µ
tp
k

The motion angle of the k-trajectory r
[t−¢T :t+¢t]
k at frame tp.

P
tp
k

The location point of detection bounding box of the k-trajectory
r
[t−¢T :t+¢t]
k at frame tp.

W
tp
k

The width of detection bounding box of the k-trajectory r
[t−¢T :t+¢t]
k

at frame tp.

vµ(¢t¿ )
tp
k

The angle velocity of the k-trajectory r
[t−¢T :t+¢t]
k at frame tp.

vP (¢t¿ )
tp
k

The linear velocity of the k-trajectory r
[t−¢T :t+¢t]
k at frame tp.

The function to score the multi-frame associations based on above multiple
alignments is expressed as:

f[t−¢T :t+¢t](y[t:t+¢t]) = ®Tª(R[t−¢T :t+¢t], S[t−¢T :t+¢t], y[t:t+¢t]) (2)

where ® is the weight of re-ranking features ª , S[t−¢T :t+¢t] is the set of
detections in temporal range [t−¢T : t+¢t], and R[t−¢T :t+¢t] are trajectories
in [t − ¢T : t + ¢t] by appending the foresee associations y[t:t+¢t]. The best
association of yt can be obtained by yt = argmaxy∈Ỹt

f[t−¢T :t+¢t](y[t:t+¢t]),

in which Ỹt is the candidate association set obtained from section 3 consider-
ing multi-alignments. Next subsection will discuss how to design the re-ranking
features ª .

4.2 Re-ranking Features for Multi-frame Associations

The key to find optimal choice of candidate associations is to design appro-
priate features ª(R[t−¢T :t+¢t], S[t−¢T :t+¢t], y[t:t+¢t]) for these associations. In-
tuitively, the foreseeing short-term associations y[t:t+¢t] in frames [t : t + ¢t]
are expected to be consistent with the previous long-term associated trajecto-
ries backward to frames. To achieve this point, we design the features in three
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aspects. First, we expect the observed detection responses in each trajectory be-
tween frames [t : t+¢t] have consistent appearance and motional trends as its
previous part in frames in frames [t−¢T : t]. Second, the relationship between
every two trajectories should have potential consistency with the scenario, while
keeping the exclusions between each other. Third, the statistical attributes of the
associations should have similar distribution as those in the training dataset. We
discuss in detail for these features in following three aspects.

In the first aspect, we consider the features to keep intra-consistency for tra-
jectories from the points of appearance, shape and motion. Given the trajectory

set R[t−¢T :t+¢t] = {r[t−¢T :t+¢t]
k }Mk=1, we split the frame length ¢T to Na parts

[t−¢Ti : t−¢Ti+1], i ∈ [1..Na], using same log-length frame intervals. We de-

note the k-th track as the detection list {stksk , ..., s
tke
k }. For each interlaced frame

tj ∈ [t : 2 : t+¢t], the appearance intra-consistency feature can be expressed as
ª1
i,j :

ª1
i,j =

1

M

M∑

k=1

I(tks < t−¢Ti) max
tp∈[t−¢Ti:t−¢Ti+1]

Aff(s
tp
k , s

tj
k ) (3)

where I(.)is indicator function, and Aff(s
tp
k , s

tj
k ) is the similarity between two

detections s
tp
k , s

tj
k using Bhattacharyya coefficient. Using three types of appear-

ance information (HSV, LBP, and RGB color), we can obtain 45 dimension
features for appearance similarities based on 3 interlaced short-term frames and
64 frames of previously tracking results (Na = 5).

To express the intra-consistency of the shape for trajectories, we expect the
smoothness of fitting curves is good as possible as those in ground truth. Thus,
fitting the detection points and computing the errors of detection points in the
future ¢t frames is very important clues. To allow motional changes, we fit the
curve for detections within different length frames, with the length as half of the
previous length. For example, looking backward 64 frames of previously tracking

results, there are 4 groups of curves Bi(r
[t−¢T :t]
k ), where the i-th group of curves

is obtained from temporal range [t−2i¢¿ : t], i ∈ [1..4]. Thus, for the i-th group
of curves, the smoothness for all tracks can be:

ª2
i =

1

M

M∑

k=1

I(tks < t− 2i−1¢¿)
1

¢t

∑

tj∈[t:t+¢t]

exp(−¸1

∥∥∥P tj
k −Bi(r

[t−¢T :t]
k )

∥∥∥
2
)

(4)
where ∥P −B∥2 is the Euclidean distance from the center point P to the curve
B.

To illustrate the intra-consistency of motional trend for the trajectories, we
consider the motional direction and velocity respectively. Given the directions

and locations of the trajectory r
[t−¢T :t+¢t]
k as {µtksk , . . . , µ

tke
k } and {P tks

k , . . . , P
tke
k },

we can compute their angular velocity and linear velocity at each moment as

{vµ(¢t¿ )
tki
k = (µ

tki
k − µ

tki +¢t¿
k )/¢t¿} and {vP (¢t¿ )

tki
k = (P

tki
k − P

tki +¢t¿
k )/¢t¿}

by consideration of different temporal interval ¢t¿ . It is helpful to tolerate the
misalignments of detections using different ¢t¿ because the small perturbations
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exist in the detection responses. Assuming the angular velocities obey von Mises
distribution as in [25] and the linear velocities obey Gaussian distribution, the
motion consistencies based on temporal difference ¢t¿ are expressed as:

ª3
¢t¿ =

1

M

M∑

k=1

1

¢t

∑

tj∈[t:t+¢t]

1

2¼I0(¸2)
exp(¸2 cos(vµ(¢t¿ )

tj
k )) (5)

ª4
¢t¿ =

1

M

M∑

k=1

1

¢t

∑

tj∈[t:t+¢t]

exp(− (vP (¢t¿ )
tj
k − vP (¢t¿ )

tj−1
k )2

2¾2
k(vP (¢t¿ )k)

) (6)

where I0 is modified Bessel function of order 0. Using 3 different values for ¢t¿ ,
e.g. (1, 2, 4), we can get 6 dimension features.

In the second aspect, we expect to obtain the features between every two
trajectories. These features should reflect the information of mutual exclusion
among the trajectories, as well as coincident with context. For example, people
always walk along the limited paths since there are not too many roads in one
scenario. Thus, some persons will pass along similar paths when there are lots of
people walking through. We design the features from the aspects of trajectory
shapes. To obtain the features between the trajectory shapes, we compute the
chamfer distance between every two trajectories. We keep its 5-bins histogram

after normalization by the width of bounding box {W tks
k , . . . ,W

tke
k }. The value of

i-bin is:

ª5
i =

1

M(M − 1)

M∑

u ∕=v

I(L(i) < Cℎd(r[t−¢T :t+¢t]
u , r[t−¢T :t+¢t]

v ) < H(i)) (7)

where : Chd(ru, rv) =
1

∣ru∣
∑

tj∈[tut :t
u
e ]

min
tl∈[tvt :t

v
e ]
(
∥∥Ptj

u − Ptl
v

∥∥/Wtj
u )

where L(i) and H(i) are the low and high boundary for bin i. We set the values
as (0, 0.5, 1, 2, 4) and (0.5, 1, 2, 4,+∞) for 5 bins respectively.

In the third aspect, extra statistic features of the trajectory group in the
temporal range [t −¢T : t +¢t] are calculated according to the ground truth.
We expect the features obtained from the test associated trajectories are matched
to these statistic values as much as possible. We utilize three statistic features.
The first is the average occluded length. Inspired by the work [4], we use Cauchy-
Lorentz distribution to model the consecutive occluded frames of each trajectory.
The average weighted value is:

ª6 =
1

M

M∑

k=1

∏

¢j∈gaps(r
[t−¢T :t]
k )

¸3∣∣∣r¢j
k

∣∣∣
2

+ ¸2
3

(8)

where gaps(r) is the occluded segments of track r, and
∣∣∣r¢j

k

∣∣∣ is the consecutive

frame length for occluded segment ¢j.
The second statistic information is the number of started trajectory and

the number of terminated trajectory between the temporal range [t : t + ¢t].
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We assume they are modeled by exponential distribution. Thus, we obtain the
features related with these numbers as:

ª7 = exp(−¸4
1

M

M∑

k=1

I(t <= tks < t+¢t)) (9)

ª8 = exp(−¸5
1

M

M∑

k=1

I(t <= tke < t+¢t)) (10)

The third statistic information is the length of trajectory. We hope the tra-
jectory extends as long as possible. Thus, too short trajectories are unexpected
because they are always obtained by abnormal linkages. We calculate this attri-
bution as following feature:

ª9 = exp(−¸6
1

M

M∑

k=1

1

tke − tks
) (11)

Above 9 types of features are appended to appraisal whether the generated
trajectories are better or not. The parameters (¸1, ¸2, . . . , ¸6) are estimated by
the ground truth. Using the length of ¢t = 5 and ¢T = 64, there are 64-
dimension features by considering all above three aspects’ features. By exper-
iments, they are suitable for discrimination between positive associated tracks
and negative ones.

4.3 Ranking SVM Learning of Multi-online Associations

Because our goal is to appraise multi-frame associations obtained using multiple
alignments, we need to prioritize them using one score function f[t−¢T :t+¢t](.).
This is a problem of re-ranking learning for structured output as discussed pre-
viously [26]. Given one pair of association results yi[t:t+¢t] and yj[t:t+¢t] such that

the former has higher priority than the latter, denoting as yi[t:t+¢t] ≻ yj[t:t+¢t],

we hope their values using score function have relationship:

yi[t:t+¢t] ≻ yj[t:t+¢t] ⇔ f[t−¢T :t+¢t](y
i
[t:t+¢t]) > f[t−¢T :t+¢t](y

j
[t:t+¢t]) (12)

Considering the linear weighted formulation defined in equation (2) and fea-
tures defined in above section, we need to obtain the optimal weight vector
®. This re-ranking for structured output can be solved efficiently using cutting-
plane algorithm [27]. We employ the scaling slack form to learn the weight vector:

® = argmin
®

1

2
∥®∥2 +C2

∑

i∈[1:∣Q∣]
³i (13)

s.t.

®T (ª(R[ti−¢T :ti+¢t], S[ti−¢T :ti+¢t], y
∘
[t:t+¢t])−

ª(R[ti−¢T :ti+¢t], S[ti−¢T :ti+¢t], y[t:t+¢t])) ≥ 1− ³i

L(y∘[t:t+¢t], y[t:t+¢t])

∀³i ≥ 0, ∀y[t:t+¢t] ∕= y∘[t:t+¢t] ∧ y[t:t+¢t] ∈ Y[t:t+¢t]
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In our method, we extract the training sample pairs set Q from the ground
truth. Each sample in this set is composed by the detections S[ti−¢T :ti+¢t] with
at most length ¢T + ¢t, their association results y∘[t:t+¢t] by changing some
linkages in ground truth as introduced in experiments, and the associated tracks
R[ti:ti+¢t]. The loss L(y∘[t:t+¢t], y[t:t+¢t]) between two associations y∘[t:t+¢t] and
y[t:t+¢t] are defined as the Hamming loss of the y[t:t+¢t] when y∘[t:t+¢t] is same
with ground truth, or difference between the Hamming losses of y[t:t+¢t] and
y∘[t:t+¢t]. We use efficient one-slack algorithm [27] to train the weight vector ®.

5 Experiments

To evaluate the performance of our proposed method, we utilize three public
datasets: PETS09-S2-L1, ETHMS, and TUD. The sequences in these datasets
contain different visual conditions, such as static camera and moving camera,
partial occlusion and full occlusion, pose variation, and illumination changing,
etc. More importantly, the detection results and tracking ground truth of these
datasets are opened to public.1 Thus, we can compare with other methods fairly.

We set the hyper-parameters C1 and C2 as 10.0 and 100.0, and estimate
other parameters related with specific distributions by training dataset. In ex-
periments, we train the re-ranking of multiple candidate associations using multi-
frame features (3)-(11) in offline process. Then, we compare with five state-of-
the-art multi-target tracking algorithms with public evaluation metrics.

In the offline training process, we learn the weights ® for association fea-
tures ª . We employ the ranking SVM algorithm. First, we need to construct
the training dataset Q which is composed by multi-frame association pairs

{(yq1[t:t+¢t], y
q2
[t:t+¢t])}

∣Q∣
q=1. In each frame range [t : t +¢t], we extract three dif-

ferent associations yGT
[t:t+¢t], y

A
[t:t+¢t] and yB[t:t+¢t], where the first association

yGT
[t:t+¢t] is same as ground truth, and latter two associations yA[t:t+¢t] and yB[t:t+¢t]

are obtained by three different transformation operations to yGT
[t:t+¢t]: switching

some detection segments between two tracks, drifting some detections for some
tracks, or adding some faked tracks into the association. By using these opera-
tions, the constructed associations have such relationship yGT

[t:t+¢t] ≻ yA[t:t+¢t] ≻
yB[t:t+¢t] that we can construct three different pair samples (yGT

[t:t+¢t], y
A
[t:t+¢t]),

(yGT
[t:t+¢t], y

B
[t:t+¢t]) and (yA[t:t+¢t], y

B
[t:t+¢t]). The size of training dataset triples

the number of frame ranges which we can separate training sequences into. Thus,
we construct 1404, 1095 and 114 pair samples from ETHMS, PETS09 and TUD
respectively, and verify the tracking results by cross-validation between them.

Our method aims to combine the re-ranking multi-candidate associations
into online tracking strategy. As discuss above, we need the cross-validate strat-
egy to evaluate our method using different training set for re-ranking learn-
ing. We call our method as re-ranking based low-latency online multi-target
tracking (ReRankingLMT). Specifically, the methods based on training datasets,
ETHMS, PETS09 and TUD, are named ReRankingLMT-E, ReRankingLMT-P

1 http://iris.usc.edu/people/yangbo/downloads.html.
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and ReRankingLMT-T respectively. To evaluate the performance of our pro-
posed method using this combining strategy, we need to compare with the meth-
ods using online strategy and offline optimization. Using the common ground
truth and detection response input, we compare with five state-of-the-art meth-
ods. The first two methods are recognition based tracking (PIRMPT) [12] and
structured output SVM based method (SSVMMOT) [6]. Similar with our meth-
ods, these two algorithms combine the offline learned features to online tracking
process. The last three methods are energy based algorithm (EnergyMIN) [28],
the method considering exclusion between detections and trajectories (ExcTrack-
ing) [4] and the online CRF based method (OnlineCRF) [3]. These three methods
construct different CRFs with different constraints, and global optimizations are
executed to finding the best association results. It is convincible for our proposed
method to compare with these five methods in aspects of both feature learning
and long-term association optimization.

To evaluate the quantitative performance, we employ the VACE metrics [3].
These metrics are mainly composed by detection recall (RECALL), detection
precision (PREC), the percentage of the mostly tracked objects (MT), the per-
centage of the partial tracked objects (PT), the percentage of the mostly lost
objects (ML), the number of trajectories’ interruption by tracking (Frag), and
the number of real identities’ changes for tracked trajectory (IDS). Because ML
is redundant with MT and PT, we omit this item. These metrics can be calcu-
lated using public tools [3]. Moreover, we use the harmonic mean (F) of RECALL
and PRECISION to reflect the overall metric.

Table 2 gives the results of comparison. By comparison with the similar on-
line algorithms, PIRMPT and SSVMMOT, which utilized offline learned fea-
tures in the online tracking manner. Our method exceeds them both in re-
call and integrity of the trajectories. Most true detections are linked to our
tracked results and trajectories are generated more completely. By comparison
with global optimization methods, EnergyMIN, ExcTracking and OnlineCRF,
our approach shows competitive results. In the scenario of the static camera,
such as in PETS09, our approach even outperforms these global optimizing al-
gorithms. There are less identity switches and false-alarming tracking fragments.
As discussed above, these attribute to the stable distinguishability in ambiguous
associations. Besides, different from these global optimizing methods which all
induce long-time delay when used for online tracking applications, our method
only has low latency less than 10 frames.

Figure 3 shows some tracking examples. The first row illustrates some results
from the static camera as in PETS09-S2-L1 sequence. There are interactions and
short term partial occlusions, such as those of person 11 and person 9 in the 480-
th and 510-th frames. Our method appears robust for these partial occlusions,
even in the long-time occlusion case for person 3 in the 65-th frame. The second
and third rows illustrate the examples when camera is parallel with view field
in TUD and ETHMS sequences. There are many inaccurate detection results
in TUD sequence, and person 3 and person 8 pass behind others causing full
occlusions. Our method obtains correct tracking trajectories for them, although
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Table 2. Comparison With State-of-the-art Methods

Datasets METHOD RECALL PREC F MT PT Frag IDS

PETS- PIRMPT[12] 89.5% 99.6% 0.94 78.9% 21.1% 23 1

2009- SSVMMOT[6] 97.2% 93.7% 0.95 94.7% 5.3% 19 4

S2-L1 OnlineCRF[3] 93.0% 95.3% 0.94 89.5% 10.5% 13 0

ExcTracking[4] — — — 94.7% 5.3% 15 22

EnergyMIN[28] 92.4% 98.4% 0.95 91.3% 4.3% 6 11

ReRankingLMT-E 98.9% 97.5% 0.98 94.7% 5.3% 3 2

ReRankingLMT-T 98.9% 97.7% 0.98 94.7% 5.3% 4 2

TUD PIRMPT[12] 81.0% 99.5% 0.89 60.0% 30.0% 0 1

Stadt- SSVMMOT[6] 80.0% 96.7% 0.88 80.0% 20.0% 11 0

mitte OnlineCRF[3] 87.0% 96.7% 0.92 70.0% 30.0% 1 0

ExcTracking[4] — — — 40.0% 60.0% 13 15

EnergyMIN[28] 84.7% 86.7% 0.86 77.8% 22.2% 3 4

ReRankingLMT-E 89.0% 98.6% 0.94 80.0% 20.0% 3 3

ReRankingLMT-P 89.5% 98.2% 0.94 80.0% 20.0% 4 3

ETHMS PIRMPT[12] 76.8% 86.6% 0.81 58.4% 33.6% 23 11

SSVMMOT[6] 78.4% 84.1% 0.81 62.7% 29.6% 72 5

OnlineCRF[3] 79.0% 90.4% 0.84 68.0% 24.8% 19 11

ExcTracking[4] 77.3% 87.2% 0.82 66.4% 25.4% 69 57

ReRankingLMT-P 79.7% 86.4% 0.83 66.0% 24.5% 37 33

ReRankingLMT-T 78.9% 86.9% 0.83 62.8% 27.7% 38 27

several ID switches are induced such as for track 5 in the 76-th frame. By contrast
with TUD, the sequence of ETHMS is taken from moving camera, and there are
lots of full occlusions when the persons pass by. Our method can handle them
in most cases like in frame 910 to frame 950, where two persons 77 and 78 are
full occluded and recovered after person 73 leaves the view of camera.

We implement our method with runtime of about 2.2FPS using the non-
optimized code of Matlab 2013 at the platform of INTEL i7-3632QM and 2.2GHz
CPU. This runtime is slow mostly due to the calculation of multi-frame features
for multi-candidate associations. However, it can be promoted in the future since
most of these calculations are redundant. Another issue is how to handle the
problem of occlusion. Because we mainly focus on how to find better candidate
association in this paper, we adopt the method in [6] to handle the short-term
occlusion problem for each association. Besides, we expect the occlusion gaps
are reasonable due to the feature (8). One of the advantages of our method is we
can integrate our re-ranking process into the other online tracking frameworks,
because our method is not tightly coupled with them, and promote the final
performance.
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Fig. 3. Tracking examples for (a) PETS09, (b) TUD and (c) ETHMS bahnnof.

6 Conclusions

In this paper, we propose an online tracking framework combining the global op-
timization of previous long-term associations. We implement this by re-ranking of
multiple short-term associations generated by multiple alignments. The features
considering both the trajectory specific self-similarities and mutual relationships
between tracks are designed to choose the optimal associations. The experimen-
tal results show the discrimination of these weighted features by offline training.
By comparison with five state-of-the-art algorithms in three public datasets us-
ing common evaluation tools, our method outperforms the other online tracking
algorithms and is competitive with global optimal ones. In the future work, we
can try to promote the performance by adding more related features, or inte-
grate the possible alignments into an efficient online optimization algorithm by
treating them as latent variables, and thus avoiding the re-ranking process.
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